HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage
نویسندگان
چکیده
A severe lack of von Willebrand factor– cleaving protease (VWF-CP) activity can cause thrombotic thrombocytopenic purpura (TTP). This protease was recently identified as a member of the ADAMTS family, ADAMTS-13. It consists of a preproregion, a metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 motif (Tsp1), a cysteine-rich domain, a spacer domain, additional Tsp1 repeats, and CUB domains. To explore the structural and functional relationships of ADAMTS-13, we prepared here 13 sequential COOH-terminal truncated mutants and a single-point mutant (ArgGlyAsp [RGD] to ArgGlyGlu [RGE] in the cysteine-rich domain) and compared the activity of each mutant with that of the wild-type protein. The results revealed that the truncation of the cysteine-rich/spacer domains caused a remarkable reduction in VWF-CP activity. We also prepared immunoglobulin G (IgG) fractions containing inhibitory autoantibodies against ADAMTS-13 from plasma from 3 patients with acquired TTP, and we performed mapping of their epitopes using the aforementioned mutants. The major epitopes of these antibodies were found to reside within the cysteine-rich/spacer domains. These results suggest that the ADAMTS-13 cysteine-rich/spacer domains are essential for VWF-CP activity. (Blood. 2003;102: 3232-3237)
منابع مشابه
Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis.
OBJECTIVE A disintegrin and metalloprotease with thrombospondin type 1 repeats-13 (ADAMTS13) inhibits platelet aggregation and arterial thrombosis by cleavage of von Willebrand factor. However, the structural components of ADAMTS13 required for inhibition of arterial thrombosis are not fully defined. METHODS AND RESULTS Using recombinant proteins and a murine model, we demonstrated that an AD...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY VWF73, a region from D1596 to R1668 of von Willebrand factor, provides a minimal substrate for ADAMTS-13
ADAMTS-13 was recently identified as a new hemostatic factor, von Willebrand factor (VWF)–cleaving protease. Either congenital or acquired defects of the enzymatic activity lead to thrombotic thrombocytopenic purpura (TTP). ADAMTS-13 specifically cleaves a peptidyl bond between Y1605 and M1606 in the A2 domain of VWF. Here, we determined the minimal region recognized as a specific substrate by ...
متن کاملADAMTS‐13 and von Willebrand factor: a dynamic duo
von Willebrand factor (VWF) is a key player in hemostasis, acting as a carrier for factor VIII and capturing platelets at sites of vascular damage. To capture platelets, it must undergo conformational changes, both within its A1 domain and at the macromolecular level through A2 domain unfolding. Its size and this function are regulated by the metalloproteinase ADAMTS-13. Recently, it has been s...
متن کاملAssembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large Von Willebrand Factor Links Complement and Hemostasis-Thrombosis
BACKGROUND Vascular endothelial cells (ECs) express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF) multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP) is an important non-antibody-requiring host defense system. Th...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Aberrant dimerization of von Willebrand factor as the result of mutations in the carboxy-terminal region: identification of 3 mutations in members of 3 different families with type 2A (phenotype IID) von Willebrand disease
The 3* end of the VWF gene was screened in the affected members of 3 different families with type 2A (phenotype IID) von Willebrand disease (vWD). Exons 49 to 52 of the VWF gene were amplified and screened for mutations by chemical cleavage mismatch detection. Mismatched bands were detected in exon 52 of 2 patients and in exon 51 of a third patient. Using direct DNA sequencing, a heterozygous G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003